
Managing the Health of Security Experiments ∗

Jelena Mirkovic
USC Information Sciences

Institute
4676 Admiralty Way ste 1001

Marina Del Rey, CA 90292
sunshine@isi.edu

Karen Sollins
MIT CSAIL

32 Vassar St.
Cambridge, MA 02139

sollins@csail.mit.edu

John Wroclawski
USC Information Sciences

Institute
4676 Admiralty Way ste 1001

Marina Del Rey, CA 90292
jtw@isi.edu

ABSTRACT
Testbed experiments are a challenge to manage manually, because
they involve multiple machines and their correctness depends on
the correct operation of testbed infrastructure that is often hidden
from the experimenter. Testbed experiments that recreate security
events add management challenges of scale – they are often very
large; complexity – many threats work only if certain conditions
are met by the network environment; and risk – they often involve
malicious code and disruptive actions that must be contained. Fi-
nally, an experiment may be run by someone who did not create it
originally. It is challenging for this new experimenter to ascertain
if any experiment behavior was intended or a sign of failure, and to
diagnose and correct failures.

We introduce a new paradigm of experiment health that de-
notes a user-supplied description of correct experiment behavior,
i.e., healthy experiments behave as their creators intended. We then
propose an experiment health management infrastructure that can
be added to existing testbeds to improve their usability and robust-
ness. The infrastructure consists of an expectation language in
which a user expresses her notion of experiment health, a monitor-
ing infrastructure that is driven by user expectations, health evalu-
ators, recovery engines and a shared library of health tools and col-
lected experiment statistics. This infrastructure is useful not only
for experiment management, but also for testbed management.

1. MOTIVATION
In the past decade several large and many small testbeds

have been created to promote realistic testing of solutions in
fields such as networking, distributed systems and applica-
tions, security, sensor networks, etc. Experiments on these
testbeds are distributed by nature, which makes their moni-
toring, problem detection, diagnosis and recovery challeng-
ing if done in manual fashion. We refer to all these actions as
experiment health management, where a healthy experiment
behaves as its creator intended, at all levels of observation.
∗This material is based upon work supported by the Department of
Homeland Security, and Space and Naval Warfare Systems Center,
San Diego, under Contract No. N66001-07-C-2001. Any opinions,
findings and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the Department of Homeland Security for the Space and
Naval Warfare Systems Center, San Diego.

This notion of health at all levels is necessary to differenti-
ate a healthy experiment from an experiment that reaches a
creator-intended goal but in a way that creator did not intend.
We will illustrate this point in the following section.

Security experiments pose additional management chal-
lenges of high scale, complexity and risk. Because security
events, such as DDoS or worm propagation, are high-scale,
experiments that recreate them usually require tens to hun-
dreds of machines, which increases cost and complexity of
health management, and probability of health failures. Secu-
rity experiments must recreate realistic threats to either study
them or test proposed defenses. This is complex because se-
curity threats often require a complex set of conditions to be
effective, such as presence of a particular vulnerable version
of a specific application for a worm to propagate. Security
defense performance also often depends on the deployment
environment. If any puzzle piece is not set just right the
threat or its defense may not succeed. Security experiments
are often risky because they involve malware or create dis-
ruptive events. Testbeds need to effectively manage this risk,
which is often done assuming user collaboration, e.g., re-
quiring (but not checking or enforcing) that a user restricts
malware probes only to machines within her experiment.

Finally, there are many cases when a user running the ex-
periment is not its creator; e.g., a researcher repeats another’s
experiment, teams collaborate on a project, or a testbed is
used in education. Such a user has a particularly hard time
to detect and diagnose unexpected experiment behavior, and
would benefit from automated health management.

In this paper we introduce a novel notion of experiment
health in Section 2, which denotes the fact that experiment
behavior matches some critical set of its creator’s expecta-
tions. We propose an automated health management infras-
tructure in Section 3 and discuss its benefits both to users and
to testbeds. The infrastructure consists of an expectation lan-
guage through which a user expresses her expectations about
experimental behavior, monitoring agents that collect statis-
tics of experiment behavior, health evaluators that process
statistics and compare them to expectations to detect fail-
ures, recovery engines that restore experiment health, and a
shared library of observations and health tools. We survey
related work in section 4 and conclude in Section 5.

1

A

C
SR

Figure 1: Topology for the SYN Flood experiment.

2. EXPERIMENT HEALTH
We start by providing a sample security experiment that

we will use throughout the paper to illustrate our points. The
experiment is a SYN flood attack that occurs on the topology
shown in Figure 1. It generates some Web traffic between
client C and server S, then generates a TCP SYN flood from
the attacker node A to S. A TCP SYN flood attack [1] de-
nies service to new TCP connections on the port it targets
by generating a lot of fake connection records and tying up
the server’s OS memory. The denial can be noticed by ob-
serving C’s traffic that becomes populated by repeated SYN
packets because C cannot establish new connections.

We define experiment health as the property of the exper-
iment behaving according to its creator’s expectations, at all
observation levels. To see why health at all levels is impor-
tant imagine the case of a misconfigured SYN Flood exper-
iment. SYN traffic is sent to another port than 80, which
should not deny service to C’s Web traffic. The user can eas-
ily spot that something is wrong by observing lack of SYN
repetitions in C’s traffic, although she may have trouble di-
agnosing the cause. Now imagine that in addition to the
previous misconfiguration the machine R freezes and stops
forwarding traffic. The effect the user expects to see – C
repeating SYN packets – will occur, but for the wrong rea-
son. This is why experiment health encompasses experiment
behavior at all levels and not just the end outcome. C’s ser-
vice should be denied because of the SYN flood and not for
any other reason. Even this simple example brings home the
point that defining experiment health is a complex task. We
will describe in Section 3 how we plan to ease it for the user.

It may seem that maintaining experiment health is very
similar to network management, whose goal is to support the
network mission of delivering traffic effectively between end
nodes by maintaining connectivity, distributing load, ensur-
ing correct network configuration, etc. The main difference
is that the definition of experiment health depends critically
on experimenter’s research goals. Unlike network manage-
ment that maintains common, well-understood network per-
formance targets, experiment health management must un-
derstand what a user wants and maintain that specific be-
havior. In the example of SYN flood attack, the goal was
to deny service – quite opposite from the network manage-
ment’s goal of keeping networks up and running.

2.1 Failure Causes
We now briefly discuss why an experiment may fail to

meet user’s expectations. An experiment’s behavior is influ-

enced by the following internal and external elements, which
we believe form an exhaustive list: (1) Experiment definition
and configuration, including the software and scripts writ-
ten by the user, topology settings, location and resources
of the experimental hardware, and default OS and applica-
tions loaded by the testbed on the experimental hardware, (2)
Testbed infrastructure, such as experimental node hardware,
switching fabric, control network, and shared testbed ser-
vices like DNS and network file system, (3) Resource shar-
ing with other experiments, and (4) The public Internet, if
any of the experimental traffic is expected to cross it. Any
of these four elements may behave in a way unforeseen by a
user, and interfere with experimental results.

An experiment may be misconfigured, either by inclu-
sion or by omission. Misconfiguration by inclusion means
that some feature is explicitly present in the experiment’s
setup but it is set to a wrong value, e.g., a traffic generator
is engaged at a rate that is too low or a topology is discon-
nected. We had such misconfiguration in the above exam-
ple with SYN packets going to a wrong port. Misconfig-
uration by omission means that a user implicitly assumes
presence of some feature/value pair but the assumption does
not always hold, e.g., a user assumes that an experimental
application always works correctly, but its behavior is ac-
tually hardware-dependent, thus the experiment fails when
assigned some hardware types.

Any of the critical pieces of testbed infrastructure may
fail, including shared services. It is particularly difficult for
users to detect or anticipate this kind of failure, since many
testbed internals are usually hidden from them.

Resource sharing may create interference between exper-
iments. An experiment may overload the shared resource,
such as a file system, if fair sharing is not strictly enforced.
An experiment may also interact with a shared application
improperly causing it to misbehave and influence other users.
In the DETER testbed we have observed experiments crash-
ing the shared server that controls experimental events by
sending it overly long messages. Again, users have a hard
time diagnosing misbehavior that stems from resource shar-
ing since sharing is implicit in the testbed’s design, whose
details are not publicized to users.

Finally, if any experimental traffic travels over the Inter-
net, connectivity, congestion and any Internet services ac-
cessed by it may influence experimental behavior. For ex-
ample, if SYN Flood experiment were to be performed on
Planetlab [2] there may be connectivity between R and S but
excess SYN traffic may be filtered by some ISP-level de-
fense on this link. This may or may not lead to denial of
service for C, depending on the exact filtering behavior.

3. HEALTH MANAGEMENT
INFRASTRUCTURE

We propose a health management infrastructure that can
be integrated with current testbeds to improve their usability
and robustness. We plan to integrate this infrastructure with

2

operations: operations operation
 | operation

operation: action expect cond IFFAIL recovery

expect: EXPECT
 | EXPECT ALWAYS
 | EXPECT ALWAYS CHECK NUMBER
 | EXPECT AFTER NUMBER

action: /* empty */
 | STRING

recovery: STOP
 | LCURLY statements RCURLY

rexpression: aexpression EQ aexpression
 | aexpression NE aexpression
 | aexpression LT aexpression
 | aexpression GT aexpression
 | aexpression LE aexpression
 | aexpression GE aexpression

aexpression: STRING
 | NUMBER

statements: statements statement
 | statement

statement: action EXPECT condition IFFAIL recovery
 | action
 | STOP

cond: /* empty */
 | STRING
 | LPAREN rexpression RPAREN
 | NOT cond
 | LPAREN cond RPAREN
 | cond AND cond
 | cond OR cond

Figure 3: Expectation language grammar.

Expectation
Language Monitors

Health
Evaluators

Recovery
Engines

Library

Observations

Expectations

Monitor
Scripts

Recovery
Scripts

USER

Failure

USER TESTBED

Pr
iva

te
/P

ub
licEvaluator

Scripts

Figure 2: Health Management Infrastructure.

the DETER testbed [3]. Figure 2 shows key pieces of this in-
frastructure and how they relate to each other. Users express
their expectations using the expectation language. The ex-
pectations then drive setup of monitors that collect statistics
and store them in the library. Periodically health evaluators
read the expectations and evaluate statistics against them.
On mismatch, failed health is detected and an evaluator trig-
gers recovery engines to restore the health or inform the user.
Specifics of desired recovery actions are also obtained from
expectations. In addition to observations, the library may
hold expectations, together with custom monitor, evaluator
and recovery scripts that a user wants to reuse . Each library
component can be marked as private or public, thus users
may share their data and scripts with others. Testbed opera-
tors populate the public library with commonly used scripts
and expectations such as the expectation of all experimental
machines being up and accepting logins, and all experimen-
tal links being passable.

With regard to deployment, we envision some monitors
running on experimental nodes (such as those monitoring
file system changes) and others running on the testbed in-
frastructure (those monitoring the testbed’s health). Place-
ment of health evaluators and the library must be such to
minimize communication cost for library reads and writes,
while maximizing sharing and robustness. In a geographi-
cally centralized testbed like Emulab [4] is likely that both

these services would run on shared testbed nodes. In a dis-
tributed testbed like Planetlab [2] creating a local copy of
relevant library modules and deploying evaluators on a ded-
icated experimental node may yield better performance. Re-
covery engines are instantiated on need bases, and their lo-
cation depends on the type of recovery.

3.1 Expectation Language
Figure 3 shows the preliminary grammar of the expecta-

tion language in yacc format. We expect to extend this de-
sign as our work progresses.

Expectation statements start by specifying some action,
such as calling a user-supplied script. After the keyword EX-
PECT, the user specifies what the desired outcome should be
by invoking health evaluators (see next section). If the ex-
pectation is not met, actions after the IFFAIL keyword are
invoked. Within the IFFAIL body the user may specify ad-
ditional expectations, invoke recovery actions (such as send-
ing herself an email), or stop the execution using the key-
word STOP. Commands that specify health evaluators and
recovery actions refer to corresponding library scripts. An
EXPECT keyword can be followed by ALWAYS denoting
that health evaluation should be repeated periodically. The
default period of 1 minute can be changed using the keyword
CHECK followed by a number of seconds. An EXPECT
AFTER followed by a number of seconds denotes evalua-
tion that should be performed after that delay, to let the ac-
tion take effect.

We now illustrate how a user may use expectations to de-
tect and diagnose failures. While early experimentation re-
quires user interaction with the experiment, mature experi-
mentation is often scripted so many runs can be executed to
collect statistically significant data. Expectations are meant
to extend existing scripts with failure detection and diagnos-
tics. Figure 4 shows a sample expectation script for the SYN
flood attack. Text shown in black is the original user’s script
that starts the legitimate traffic and starts the attack. The
first line invokes library functions that continuously check if
all nodes and links are functioning. The second line checks
for presence of SYN cookies [5], a popular defense against
SYN flood that is on by default in some operating systems.

3

EXPECT ALWAYS all_nodes_up AND all_links_up
 IFFAIL { alert("Testbed hardware problem")

 STOP
EXPECT [NOT exists("/proc/sys/net/ipv4/tcp_syncookies",S)
 OR contents("/proc/sys/net/ipv4/tcp_syncookies",S,"0")]
 IFFAIL { alert("Syncookies are on at S")

 STOP }
run_leg_traffic EXPECT traffic(C,S,"dst port 80")
 IFFAIL { alert("Legitimate traffic does not flow")

 STOP }
run_attack EXPECT traffic(A,S,"dst port 80 and 'tcp[13] = 2'")
 IFFAIL { alert("Attack does not occur")

 STOP }
EXPECT AFTER 10 [traffic(C,S,"dst port 80 and 'tcp[13] = 2'")
 > traffic(C,S,"dst port 80 and 'tcp[13] & 8 == 8'")]
 IFFAIL { alert("Attack does not work")

 STOP }

Figure 4: Expectations for SYN flood attack.

Legitimate traffic is then run and an evaluator checks if it ar-
rives successfully at the server; the same check is repeated
for attack traffic in the next line. Finally, the attack’s success
is checked by verifying that the number of SYN packets is
larger than number of data packets arriving at the server. On
all failures the user is alerted via a message that helps diag-
nose the source of failure, and execution is halted.

Expectations may be written by an experimenter, or a
testbed may attempt to aid expectation writing by providing
support for user action observation, correlation and learning.
We plan to first implement explicit expectations in DETER
and then add the following learning approach. The testbed
monitors the user’s shell history and correlates this with traf-
fic, file and process changes observed on all experimental
machines, at a relatively low frequency, customizable by the
user. Changes that occur in a small window after a user’s
action are recorded as an expected outcome. It is likely
that several iterations will be needed to discern cause-effect
changes vs changes that just happen to overlap a user’s ac-
tion but are not causally related. We also anticipate that in-
ferred expectations will be incomplete and imperfect — an
automated process can hardly match a human’s understand-
ing of experimental behavior. We emphasize however that
even human-designed expectations are likely to evolve over
a life of an experiment as the user discovers new behavior
invariants and failure modes. The learning approach we pro-
pose is simply meant to provide a rough starting point that
must further be iteratively refined by the user.

3.2 Monitors
To support health evaluation it is critical to provide mon-

itoring and data collection about what is happening in the
testbed as a whole and in each particular experiment. There
are three key sources of such data: (1) static testbed data
such as IP addresses, node allocation to a particular exper-
iment, etc. (2) data collected routinely in all experiments
and in the facility itself, such as packet traces, node live-
ness, etc., and (3) explicit data collection requested by an
experimenter or the testbed management, in context of an
expectation’s condition evaluation. We also identify three
challenges to data collection. First, because of scale and sys-
tem unreliability, available data may be incomplete. Second,

the desired information may not be directly measurable, but
must be inferred from other measurements that can be gath-
ered (e.g. quality of service). Finally, in light of security ex-
pectations that relate to privacy, some information may not
be accessible where it is desired. Either an experiment or
the testbed system may withhold information from the other.
We will provide a base set of data collection tools in our li-
brary, which will be extensible by researchers. Specifically
we will provide tools that collect traffic, process status data,
file system data and file contents.

There is also an inherent tradeoff in data collection that
influences its frequency. Too frequent collection may inter-
fere with the experiment’s behavior, but infrequent collec-
tion may delay detection of failures. It will likely be impos-
sible to set a default frequency that satisfies all users, since
each experiment’s sensitivity to data collection depends on
user-specified experiment’s behavior, and users may be sat-
isfied with a wide range of detection delays. Instead we
hope to provide a safe, low-frequency setting as a default
for novice users and a monitor API for advanced users to
customize frequencies. We acknowledge that getting these
settings right will be challenging for users but we do not see
a better alternative.

3.3 Health Evaluators
The job of health evaluation is to determine whether the

current behavior of a subject meets specified health criteria.
There are two aspects to evaluating the health of a subject.
The first is to select the particular behaviors of the subject,
such as link bandwidth, jitter or loss rate, that are to be evalu-
ated for the desired expectation goal. The second is to deter-
mine if the health of that subject meets the desired goal, i.e.
to translate a quantitative result such as a link’s loss rate into
a qualitative true/false result. We plan to implement evalu-
ators that must be explicitly invoked by users, with success
criteria that must also be explicitly specified. Initial evalua-
tors provided in the library will help users detect if a machine
is live, if there is a shell on that machine, if a link is passable,
if a file exists, if file contents match a regular expression sup-
plied by the user, if a process exists and matches a specified
state, and if specific traffic flows between two nodes.

Returning to Figure 4, evaluators all nodes up and
all links up are complex library functions that call sim-
ple functions node up(node) and link up(link) for
each node and link in the experiment and return true if all
evaluations are true. Evaluator exists checks for pres-
ence of a file on a specific experimental node — in our case
node S. Evaluator contents is similar to exists but has
a third argument — a regular expression that should match
file contents for the result to be true. Evaluator traffic
checks if traffic flows from the first node in the argument list
to the second, and returns packet count within some prespec-
ified interval. The third argument is a tcpdump expression
that is used to filter traffic of interest.

We now touch on the problem of composite evaluation

4

run_attack EXPECT traffic(A,S,"dst port 80 and 'tcp[13] = 2'")
 IFFAIL {
 EXPECT exists("run_attack",A) IFFAIL
 { alert("Attack file does not exist")
 STOP }
 alert("Attack script does not run")

 STOP }}

Figure 5: Recovery actions based on failure cause.

in the case of more complex goals. For example, our goal
may be to create the SYN flood attack from 20 machines
to a server, then engage some defense on several routers in
the topology that are on the traffic’s path, and measure if it
is working. Expressing this goal via low-level expectations
would result in a long, unwieldy script. We will likely need
to extend the expectation language vocabulary in the future
for iteration, expectation parameterization and composition
of high-level expectations by invoking low-level ones by
name, similar to function calls.

3.4 Repair
Repair actions are invoked on a detected failure. The

action may be enclosed into an expectation statement if
there are different recovery steps that may be taken depend-
ing on problem diagnosis. For example, imagine that the
run attack script may fail either because there is no such
file or because the commands inside the script do not run.
The fourth line from Figure 4 is modified as shown in Figure
5 to account for these two sources of error, diagnose them
properly and take correct recovery action.

Similarly to monitoring tools, we will initially develop
several common recovery tools and store them into the pub-
lic library: emailing the user or the operator, displaying a
pop-up window to the user, rebooting a machine, swapping
out the experiment, reswapping the experiment, quarantin-
ing the experiment, reconfiguring the experimental firewall
or the main DETER firewall, and stopping, starting or restart-
ing a process.

3.5 Sharing
We expect that a lot of tools developed for experiment

health management will be reusable. Tool sharing occurs
via the library that we will initially populate with public,
monitoring and recovery scripts, and health evaluators. The
library will be extensible, so that users can reuse their cus-
tom scripts and can build upon each other’s work. Users will
be able to mark library components they contribute as either
public or private.

The collected information may be valuable to more than
one monitoring tool in different contexts. For example, it
may be important to collect packet traces in an experiment
for the following uses: (1) user’s evaluators may depend
on these traces to verify correct experiment behavior, (2)
the testbed may use such traffic information to determine
the health of the complete set of resources it is managing,
(3) testbed operators may use it to develop long-term traf-

fic and usage models for planning provisioning, (4) traffic
traces may provide an audit trail if an experiment creates a
security risk for the testbed. The information should be col-
lected once and managed effectively to allow for multiple
uses. This requires a common information substrate or in-
formation plane, with well defined access rules and contexts,
that we plan to develop on DETER. Information collection
and access must be designed to reflect the security and pri-
vacy expectations both of users and of the testbed.

3.6 Benefits of Health Management
We now summarize the expected benefits from experi-

ment health management. While many users and all testbed
operators already deploy custom scripts to monitor the ex-
perimental and testbed behavior, there are several drawbacks
to this practice. First, scripts are usually written based on
prior experience with common failure modes and an implicit
definition of desired behavior. They are often engaged on
need basis. The health management framework encourages
explicit specification of desired behavior and engagement
dynamics thus helping users and operators become aware of,
formalize and refine their assumptions. Second, scripts are
often tied to a single experiment or testbed, and hard to share
or reuse while we hope to develop parameterized monitors,
health evaluators and recovery engines that facilitate sharing
and can be reused without modifications.

4. RELATED WORK
Our experiment health management is an extension and

customization of knowledge plane [6] ideas to network test-
beds. Much recent work in this area has concentrated on the
sub-problem of supporting an information plane [7, 8, 9, 10]
but it does not provide the ability to control or limit access
to information based on security and privacy policies, which
we plan to develop.

There is vast work in network management, which dif-
fers from our health management because testbed exper-
iments lack generally agreed-upon correctness or perfor-
mance goals. Another difference lies in the granularity at
which management is done: networks are managed at the
high granularity of network elements and links, while exper-
iments also need to be managed at the low granularity of user
actions.

There are a number of tools for distributed application
management on PlanetLab [2], of which the most advanced
is Plush [11]. Plush is a toolkit for distributed application
configuration, management and visualization. Plush enables
users to specify tasks in XML format, then executes them
invoking low-level process, file and resource monitoring to
detect failures. Plush also provides synchronization primi-
tives and performs resource acquisition and reallocation as
needed. The primary distinction between Plush and our pro-
posed health monitoring is that Plush manages for known
performance goals (connectivity, process liveness, etc.) suit-
able for continuously running applications, while we addi-

5

tionally manage for customizable performance goals that are
suitable for widely varying testbed experiments. Our man-
agement thus includes the notion of “expected performance”
and covers a wider range of behaviors than Plush.

Emulab’s Experimenters Workbench [12] contains sup-
port for experiment versioning, cloning via a template, and
archiving. These capabilities support pre-packaged experi-
ments, and are needed for sharing but they do not provide
any support for experiment creation and correctness check-
ing, which is our main focus.

In the area of expectation or policy specification lan-
guages, we mention two extremes. XACML [13] is a declar-
ative language and expects something else to enforce poli-
cies. From our perspective, policy declarations are only a
small part of our challenge. In contrast, Ponder [14, 15] is
an object-based language for declaring not only security and
management policies, but time, state, and composite condi-
tions under which they should be evaluated, sets of subjects
to be evaluated, sets of targets over which some action might
be taken, and the actions themselves. Simpler than Ponder,
Tcl Expect [16] is a scripting environment whose syntax en-
ables specification of control flows that depend on controlled
program outputs, thus automating system testing. Our ex-
pectation language will incorporate capabilities present in
Ponder and Tcl Expect, but our challenge is to make the
language easily accessible, usable, and understandable by
a broad set of differently skilled experimenters. We thus
plan to reuse features of existing languages, wrapping them
in more user-friendly syntax and higher level language con-
structs.

5. CONCLUSIONS
We have described an experiment health management sys-

tem for use by cybersecurity researchers conducting exper-
imental testbed research. The system allows researchers to
explicitly express invariant conditions or expectations about
an experiment’s behavior. It monitors these expectations
during experiment execution, and may trigger reporting, log-
ging, or corrective actions if expectations are not met.

We see two distinct advantages to the use of such a system.
First, the very act of making expectations explicit improves
research methodology and leads to improved understand-
ing. The act of documenting experiment invariants within
our system may help the researcher to carefully consider
the scope and validity of their experiment. Once complete,
this documentation will communicate the experimenter’s as-
sumptions and expectations to other researchers and students,
promoting repeatable research.

The system’s second advantage is its ability to improve
the validity of experimental results, by detecting failures of
experiment configuration, setup, or underlying infrastruc-
ture that might otherwise go undetected. This capability in-
creases quickly in importance as experiments grow in scale
and complexity.

The system described in this paper represents a first step
towards a comprehensive and usable experiment health mon-
itoring system. To fully realize the potential of such a sys-
tem, further advances will be required both in functionality
of the system and ease of use. High level, intuitive tools that
assist the experimenter in capturing expectations and devel-
oping appropriate responses to failures will be particularly
important. Nonetheless, even this first step may be of sig-
nificant value - to researchers and teachers willing to take
the time to draft expecation scripts; to students who find
the resulting expectation documentation helpful in under-
standing the intent of an experiment, and to those seeking
to make further progress in experimental cybersecurity re-
search methodology itself.

6. REFERENCES
[1] Wikipedia. SYN attack.

http://en.wikipedia.org/wiki/SYN_flood.
[2] L. Peterson, A. Bavier, M. Fiuczynski, and S. Muir. Experiences

Building PlanetLab. In Proc. of Operating Systems Design and
Implementation Symposium (OSDI), November 2006.

[3] Terry Benzel, Robert Braden, Dongho Kim, Clifford Neuman,
Anthony Joseph, Keith Sklower, Ron Ostrenga, and Stephen Schwab.
Experience with DETER: A Testbed for Security Research. In Proc.
of Tridentcom, March 2006.

[4] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi
Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet
Joglekar. An Integrated Experimental Environment for Distributed
Systems and Networks. In Proc. of the Fifth Symposium on
Operating Systems Design and Implementation, pages 255–270,
December 2002.

[5] D. J. Bernstein. SYN Cookies.
http://cr.yp.to/syncookies.html.

[6] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A
Knowledge Plane for the Internet. In Proc. of ACM SIGCOMM,
2003.

[7] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An Information
Plane for Networked Systems. In Proc. of 2nd Workshop on Hot
Topics in Networks, pages 15–20, 2004.

[8] J. Kopena and B. Loo. OntoNet: Scalable Knowledge-Based
Networking. In Proc. of 4th Workshop on Networking Meets
Databases, 2008.

[9] Y. Mao, B. Loo, Z. Ives, and J. Smith. The Case for a Unified
Extensible Data-Centric Mobility Infrastructure. In Proc. of ACM
SIGCOMM International Workshop on Mobility in the Evolving
Internet Architecture, 2007.

[10] W. Zhou, E. Cronin, and B. Loo. Provenance-aware Secure
Networks. In Proc. of 4th Workshop on Networking Meets
Databases, 2008.

[11] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. PlanetLab
Application Management Using Plush. ACM Operating Systems
Review (SIGOPS-OSR), 40(1), January 2006.

[12] E. Eide, L. Stoller, and J. Lepreau. An Experimentation Workbench
for Replayable Networking Research. In Proc. of Network Systems
Design and Implementation Symposium (NSDI), 2007.

[13] OASIS. OASIS extensible Access Control Markup Language.
http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=xacml.

[14] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In Proc. of Workshop on Policies for
Distributed Systems and Networks, 2001.

[15] N. Dulay, E. Lupu, M. Sloman, and N. Damianou. A Policy
Deployment Model for the Ponder Language. In Proc. of IEEE
International Symposium on Integrated Network Management, 2001.

[16] D. Libes. expect: Curing those Uncontrollable Fits of Interaction. In
Proc. of the Summer USENIX Conference, Anaheim, June 1990.

6

